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ABSTRACT

A theoretical investigation is made of the trajectory of
a solitary charged particle which emanates from free space and
is incident at the boundary of an idealized magnetic field. The
object is to arrive at some understanding of what is required
of the magnetospheric field if charged solar particles, incident
at the magnetospheric boundary, are to be prevented from being
reflected back out of the magnetospheric cavity.

It is shown that reflection always occurs when a charged
particle is incident near the equatorial boundary of a static ter-
minated dipole field. Consequently, the Lorentz force equation
and Newton's second law are used in an attempt to deduce some
static and temporal, non-dipolar magnetic field variations required
for deep penetration; emphasis is put on the case where the mag-
netic field gradient is perpendicular to the boundary.

Analog simulation and first order theory are then used
to demonstrate that a charged particle may enter and penetrate

deep within a magnetic field when the magnetic field gradient is

not perpendicular to the boundary of the field. The model used

is not meant to represent the field near the magnetospheric
boundary. Indeed, at the present there is a lack of knowledge

of this field on a sufficiently small spatial and time scale. Rather,
the analysis is intended to demonstrate the feasibility of direct

penetration across the magnetospheric boundary, in the event

that the sufficient field variations do occur.
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CHAPTER 1 ‘

INTRODUCTION

1.1 General Statement of the Problem

Recent space probes have revealed that the earth's magnetic

field is confined within an elongated cavity due to the interaction
of a solar plasma with the geomagnetic field. This plasma is
generally thought to be a scurce of the charged particles respon-
sible for such geophysical phenomena as the aurora polaris and
the radiation belts. However, there is no generally accepted
theory of how the charged sclar particles enter and then become
trapped in the earth's geomagnetic cavity.

This work is restricted to an analysis of the penetration and
subsequent trapping of a single charged particle in some simpli-
fied models of this cavity. In addition, a review of some notable
proposed mechanisms for particle penetration and trapping is in-

cluded.

1.2 Previous Related Siudies

Some of the first ideas linking certain geophysical phenocmena
with charged particles coming from outer space resulted from
early investigations of magnetic storms. The early theories of
magnetic storms usually attributed them to the action of some-
thing propagated from the sun to the earth. Lord Kelvin (1892)

was able to show that these storms could not be the direct result




of variations in the sun's magnetic field, and Hale's (1913) meas-
urements of the sun's field confirmed this. Ccnsequently, the
postulated solar agent became either ultraviolet radiation, or
some corpuscular emission.

Birkeland's {1896) experiments lent credence to the ''corpus-
cular' theories: he found that when he shot electrons toward a
small magnetized sphere, many of the electrons were guided
toward the polar regions. This provided the first insight into
the magnetic disturbances in high latitudes, and into the aurora
polaris.

Chapman and Ferraro {1931, 1932, 1933) suggested that
essentially neutral clouds of ionized material were emitted from
the sun during sclar storms. They investigated the effect on the
earth's magnetic field by using Maxwell’s {1881) soluticn for the
case cf & dipcle field parallel to, and approaching., a perfectly
conducting sheet {see Figure 1). The solution shows that the in-
duced currents in the perfectly conducting sheet cause the field
toc be confined to the side of the sheet adjacent to the dipole, and
the field vanishes at twc neutral points, Q, on the surfzce of the
sheet (also see Dungey, 1958, pp. 137). Generalizing this result
to the case of a neutral icnized stream approaching the earth's
dipole field, Chapman and Ferrarc concluded (1931, pp. 83):

""In the case of a stream from the Sun advancing
towards the Earth, a hollow space round the Earth
is formed in the stream; the hollow is open at the

back of the Earth (as viewed from the Sun)... part
of the stream which has collected near the Earth re-




Figure 1.

Field Configuration for a Dipole
Parallel to, and Approaching, a
Perfectly Conducting Sheet
(Dungey, 1958).



mains for a time, prcbably in the form of a ring
round the equator; this grzdually disappears by
the passage of the ions and electrons. along the
Earth's lines of force, intc the atmosphere in high
latitudes. ' .

This was the beginning of the ccncept that a geomagnetic
cavity is formed in an ionized stream cf sclar particles. How-
ever, since solar storms usually last for no more than three
days, Chapman and Ferrarc concluded that the geomagnetic
cavity was only a temporary phenomencn.

Later, measurements of the zodiacal light by Allen {1946)
and others {see Blackwell, 1956) indicated that there were elec-
trons in all space in the vicinity of the sun at all times, but their
density and the fashion in which they were moving could not be
determined.

Biermann /1951% predicted that charged particles were being
emitted continucusly by the sun, not ;ust in pulses as hzd been
assumed by Chapman and Ferrarc. He formed this conclusiocn
after showing that photon rédiation pressure alone was not enough
to explain why comet tails always peinted away from the sun.

Theoretical studies by Parker {1558, 1960, 1262} and Cham-
berlain {1960) also indicated a continuous emissicn of solar par-
ticles. They shcwed that the solar ccrona was unstable and
must be continually expanding outward in the form cf a2 very low
density plasma. Parker also arrived =t plasma velocities and

densities from ccronal properties. In additicn, he introduced

the term '"'sclar wind'" in preference to the earlier terminology,




'solar corpuscular radiation, "

in order to emphasize that a
stream of ionized solar material is blowing against the earth's
magnetic field. Striking confirmations to the ideas and calcu-
lations of Biermann and Parker were given by interplanetary
space probes in subsequent years.

Gringauz et al. {1960) detected interplanetary plasma fluxes
of about 108 particles Cm=2 sec-1 on Lunik 2 and 3. However,
they could not differentiate between a light breeze and a solar
wind, nor could they determine the direction of flow. Explorer
10 confirmed the Lunik fluxes, and, in addition, indicated that
a definite wind came approximately from the sun with a velocity
of about 300 km/sec (Bonetti et al., 1963).

Before the satellite era, Stormer (1955) proposed that
charged particles emitted from the sun may impinge upon the
earth's atmosphere after interacting with the geomagnetic field.
He calculated many possible trajectories of a solitary charged
particle in a dipole field, and presented a theoretical deduction
of the locations of the auroral zones. However, his calculations
with reasonable particle energies predicted higher auroral lati-
tudes than are observed. His major assumptions were (1) that
the earth's magnetic field was a dipole extending out to infinity,
(2) that no interplanetary field existed, and (3) that the stream
of solar particles was not neutral, but of one sign. However,
recent space probes have suggested that the inaccuracy in Stor-

mer's deduction of the locations of the auroral zones was due to



an oversimplification of the problem.

In view of the observational confirmation of the continual
geomagnetic cavity by Explorers 10, 12, 14, 18 {Imp-1), and 21
(Imp-2), Stérmer's use of a pure dipole field was a very crude
approximation. In addition, field measurements on Pioneer 5
(Coleman et al., 1960) detected an interplanetary magnetic field
of the order of a few gamma (1 gamma = 107° gauss).

The Mariner 2 spacecraft and the Imp-1 satellite have indi-
cated that protons and He nuclei are present in the solar wind.
Stormer's theory of the auroral zones had supposed the solar
particles to be of one sign. However, since the required stream
of charged particles of one sign would produce very large elec-
tric fields, it is now generally believed that the solar wind is
neutral, at least on a macrocscopic scale.

In addition to supplying data to confirm cr deny theories
about the long known polar phenomena. the satellites uncovered
an entirely new magnetospheric phenomenon--the existence of
geomagnetically trapped high energy particles (Van Allen, 1960).
Innumerable subsequent probes confirmed the existence of two
broad zones of penetrating particles: an cuter zone where the
energy appears mostly in the electrons, and an inner zone where
it is primarily in the protons. The source of these particles
is not known.

It is quite possible that the solar wind is at least one of

the sources of the charged particles responsible for the aurorae




and the belts of geomagnetically trapped particles. But as of
yet, there has been no generally accepted theory of how (or

even whether) the solar wind penetrates into the earth's mag-
netic cavity. A major difficulty lies in the absence of sufficient
knowledge of the magnetic field configuration, and in the corres-
ponding lack of knowledge about the characteristics of the solar
wind. In addition, it is not certain whether or not a geoelectric

field exists, and, if so, what affects it has on the solar wind.

1.3 Present Knowledge of the Geomagnetic Field and the

Solar Wind

Satellite investigations (see Cahill and Amazeen, 1963) have
revealed that the gecmagnetic field decreases radially within
the geomagnetic cavity, as expected. But just outside the cavity,
the magnetic field suddenly changes magnitude and starts wan-
dering in direction and magnitude. The region inside the cavity
is called the magnetosphere; the boundary of the cavity, termed
the magnetopause, is located at about 10 earth radii in the di-
rection of the sun, and at about 14 earth radii at 90 degrees to
the sun-earth direction. Opposite to the sun, the cavity appears
to increase to a cylinder with a radius of about 20 earth radii;
this tail continues for a long distance, perhaps several earth-
moon distances. Within the tail, the field is of the order of 20

to 30 gamma; near the edge of the magnetosphere on the noon



meridian, it is of the order of 40 to 80 gamma.

A thin current sheet in the tail, commonly referred to as
the neutral sheet, was discovered by Ness (1965). It is about
600 km thick, and extends from about 10 earth radii out to beyond
40 earth radii in the tail. This sheet of east-west current sepa-
rates the magnetic field in the northern section of the tail, which
points toward the earth, from the southern section where the
field points away from the earth.

In addition, Explorers 12 and 18 have detected the presence
of a shock wave at about 14 to 16 earth radii on the dayside of the
earth. This shock wave is formed in front of the magnetosphere
because the velocity of the solar wind is greater than the Alfvén
velocity, and is somewhat analogous to the shock wave formed by
supersonic flow past a blunt body in gas dynamics.

The region between the shock wave and the magnetopause is
referred to as the magnetosheath or transiticn region, and is
experimentally characterized by a magnetic field which is turbu-
lent compared to the field within the magnetosphere. Beyond the
shock wave a small, slowly varying interplanetary field of about
4 gamma has been detected.

Figures 2 a and 2 b (from White, 1966} summarize what is
presently known about the envirocnment in the vicinity of the geo-
magnetic cavity.

It is now known {Bridge et al., 1965; IG Bulletin, 1964} that

the solar wind is coming approximately radially frem the sun
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with a velocity of about 300 to 500 km/sec, and the energy spread
of the particles in the wind is narrow compared with the average
directed energy (AE/E Zo. 01). In addition, the wind is very
gusty, showing fluctuations in density, energy, and energy spread
on a time scale of the order of hours.

While the solar wind is thought to be approximately neutral
on a macroscopic scale, only protons and He nuclei have been
detected. But without at least quasi-neutrality, unreasonably
high electric fields would exist; thus electrons must also be

present. Typical particle densities have been found to be of the

order of 3 to 15 per cubic centimeter.

1.4 Penetration of Particles

The details of the magnetospheric boundary are of especial
significance in the discussion of the source of particles inside
the magnetosphere. In the first approximation, ionized particles
can move only along a field line or through a point where there
is no magnetic field. Whether these cases arise in one's theory
depends upon the model of the magnetospheric boundary used.
There are two general types of models which have been proposed
so far: the closed model, and the open model.

In the closed model (see Figure 3), the earth's magnetic
field is completely contained within the cavity. However, there

are two neutral points (designated by N) corresponding to Chap-
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man and Ferraro's Q (see Figure 1). (In 3 dimensions, these
are lines, not points.) Although the existence of an interplane-
tary magnetic field had been known, the magnitude was assumed
to be negligibly small (see Dungey, 1954) in the development of
this model. Blum (1963) presents a good review of the work
leading up to the closed model, as well as an extensive biblio-
graphy.

With the discovery of a regular interplanetary magnetic field
by Pioneer 5, Dungey (1961) developed the open model of the mag-
netosphere. The main feature of the open model is that some
geomagnetic field lines are connected with the interplanetary
field. Figure 4 is a sketch of the model for the case of a south-
ward interplanetary field. In this particular case, there are two
neutral points (designated by N), one on the front and the other
on the tail of the cavity.

In both models, charged solar particles impinging at the
neutral points may travel unimpeded along the lines of force
which connect the neutral points to the earth. In thc cpenm
however, charged particles may also enter the magnetosphere
by spiraling along the field lines which connect the geomagnetic
field to the interplanetary field.

In both cases the locations of the neutral points are such
as to suggest a mechanism for the source of auroral particles
only. The idea of particle penetration at a neutral point is not

new, however. As a result of his observations of solar flares,
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Giovanelli (1947) suggested that discharges of charged particles
should occur at neutral points in a magnetic field. Hoyle (1949)
first suggested that neutral points may be responsible for the
primary auroral particles. Dungey (1958) extended Hoyle's
ideas by arguing that not only should a discharge occur at a
neutral point, but that individual particles can gain energy at the
expense of the bulk flow.

As pointed out by Dungey (1961}, in the case of the open
model, if the interplanetary field is directed northward, the sur-
face of the lines of force enclose the earth, but it does not meet
the earth. Consequently, in this case, no auroral zones are
generated. He therefore concluded that there is an approximate
southward interplanetary field. Speiser (1964) presents a de-
tailed discussion of the formation of neutral peoints and an analy-
sis of particle trajectories passing through the neutral points.

The effectiveness of particle penetration aleng the field lines
in an open model, as a source of particles in the magnetosphere,
is not yet known. It is currently being studied by Grebowsky
(1966) at the Pennsylvania State University. However, it is
apparent from Figure 4 that this should be principally a peolar
cap phenomenon.

Thus, neither model of the magnetosphereic boundary gives
a steady source of low latitude particles as an obvious effect.
One must look further at the magnetospheric boundary for a

source of such particles.
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1.5 Specific Statement of the Problem

One source of low latitude particles, as well as even pos-
sibly auroral particles, may be a penetration across the mag-
netospheric boundary. This work is concerned with such a
source. In particular, it is concerned with the motion of a soli-
tary charged particle which emanates from a field-free region
and is incident at the boundary of a magnetic field. Some simple
models of both static and time-varying magnetic fields will be

considered.
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CHAPTER 2
TRAJECTORY OF A SINGLE CHARGED PARTICLE
IN THE EQUATORIAL PLANE OF A

TERMINATED DIPOLE

2.1 Description of the Model

From Figure 2 it is seen that the earth's magnetic field is
largely confined to the interior of the magnetosphere. On the day-
side of the earth near the equatorial plane, the field configuration
of the interior of the magnetosphere may be approximated by that
of a static magnetic dipole. If, in addition, it is assumed that no
magnetic field exists on the sunside of the magnetopause, the geo-
magnetic field near the equatorial plane can be given approxi-

mately by the terminated dipole (using spherical coordinates)

il

1
o
H
\4
H
1))
=
o}
0}

where ro = 10 T, (earth radii)
~ 7
= 6.3 x 10 meters

and K is the earth's dipole moment (8.1 x 1015 weber-meter).
In order to gain some insight into the problem of particle
penetration near the equatorial zone of the magnetosphere, the

equations of motion will now be solved for the case of a single
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charged particle which is incident at the equatorial boundary of

the terminated dipole given by Equation (2.1).

2.2 Solution of the Equation of Motion

In spherical coordinates relative to the center of the ter-
minated dipole {see Figure 5), the velocity of the charged par-

ticle is given by

V = Ve ae+V¢a¢+ Vrar, for all r. (2.2)

The particle is assumed to be traveling at a constant velocity

in the free space, in the equatorial plane, before impinging on
the terminated dipole at (ro, 4)0). Without loss of generality,

it shall be required that V be perpendicular to the line connecting

(r , O0) tolr , m) for r>r , and that < ¢ < 2 w. Therefore,
o o -0 — "o —

V(ro, ¢O)=VO¢§¢+V a_, (2.3)

or r

where ¢ =3 w/2 - arctan (V /Vo }s

r

¢

Ve =0, r iro,

and where V_, and V__ are constants.
o¢ or
By using the Lorentz force equaticn, F = q {V x B), and
Newton's second law, F = d(m V )/dt, together with Equation (2.2)
and Equation (2.1) for r < T sin~ @, one may arrive at the

following three equations by equating vector components:
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Figure 5. Static Terminated Dipole Representation
of the Earth's Magnetic Field.
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(b/r3) (V. sin & - 2 Ve cos ©) = dV¢/dt, (2.4)
2(b/r3) qu cos © = dVe/dt, (2.5)
S(b/t) Vysin 6 =dv /at, (2.6)

where b = - (9/m) K
and (q/m) is the charge-to-mass ratio of the particle.

In using Newton's second law, relativistic effects drop
out since dm/dt is zerc for all velocities when the only applied
force is purely magnetic; this is proved in Appendix A.

Also proved in Appendix A is the fact that | V | %isa

constant. Therefore, by Equations (2.2) and (2. 3),

2 2 2 2 2
Voqb +Vor —Ve +V¢ +Vr , forallr. (2.7)

The particle is assumed to have no initial velccity in the
59 direction. The only way to impart a velocity component in
the ge direction is by the interaction (cross product) of the
radial field with the velocity component‘ in the §¢ direction. But
there is nc radial field component in the equatorial plane of the

terminated dipole. Therefore, V_. must always be zero, and 6

S}

must always be 90 degrees.

Consequently, Equation (2.6) reduces to

-(b/77) V, = av_/dt (2.8)

¢

and Equation (2.7) yields
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V¢:i'/(VO¢2+ vorz)-vz. (2.9)

r

Combining Equations (2.8) and (2.9) gives

T (b/r) ‘/(Vod)z v 4 vr2 = dv_/dt. (2.10)

or

By using the chain rule for derivatives, together with the

relationships
V= T (dg/db), for 6 = 90°,
and
Vr = dr/dt,
one readily finds that
dVr/dt = V. (8V_/or)+ (V¢/r) (0 Vr/a ¢). (2.11)

By using Equations (2.9) and (2.11) in (2.10), one obtains

1./ 3\ ‘\/rl'tr 2 ' 'tvr 2 7 2 - “VT

~
]
<
|
o~
(¢4
=l
~
S~
(o]
H
~

x (1/r) ‘\ﬁvotb‘?‘ + Vorz) - vr2 (9 Vr/8 ®). (2.12)

After rearranging terms in Equation (2.12), dand noting that

] vr/a Vr =1, one arrives at the following expression:
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0=’V _(aV_/or)+ w/(vo¢2 G (8 V_/0 ¢)

2 2 2
ib\/(vw + V., ) -V, (o vr/a V). (2.13)

In order to solve ( 2.13), it may be noted that by applying
the chain rule for differentials to dVr, and again using the re-
lationship 8 Vr/6 V. =1, the following equation may be found.

0= dr(d Vr/a r) + do¢(d Vr/a ¢) - dV (3 Vr/'8 v.) (2.14)

Next, consider three vectors which are defined as follows:

zl= dr Er + d¢ Ecp - dVr E.'V, (2.15)
Z,=(dV /8r)a + (0V /0¢)ay+ (V. /BV )a,, (2.16)
= _ .3 — l 2 2 , 2 2 —
Z3_r VraLr:l:‘J(Voq) +Vor)-\'r t a.¢

= by (Vo¢2 * Vorz) - Vr2 a-V ’ (2.17)

where Er’ a¢, E'V are the unit vectors in (r, ¢, V_)-space.

Note that Equation (2.13) implies

Z, Z, =0 (2.18)

and Equation {2.14) implies

Zl . Z2 = 0, (2.19)
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The solution of Equation (2.13) in (r, ¢, Vr)—space is a

surface, Vr (r, ¢). In addition, Z, is the gradient of this sur-

2

face. By Equations (2.18) and (2.19), 7,1 and 7.3 are both normal

to the gradient, 72. Since the whole surface Vr (r, ¢) is a

solution to Equation (2.13), and since 21 and 23 are both normal

to the gradient of the surface, -Z_Z,« it is possible to generate a
point on the surface by requiring that 7.1 be parallel to —2-,3 at that
point. Consequently, the corresponding vector components of
zl and 23 must be proportional at that point, and the following

equation may be written.

dr d¢ dv
= + -

2 2 2 2
r r‘\/(Voq) +V0r)-Vr

r

+ .
bV(VOth v v ?

or

(2.20)

By Equation (2.20), after rearranging terms, one finds that

dr Vr dVr
— = F (2.21)
’ pWiv 2+v 5 -v?
¢ o¢ or r
Therefore,
d o Vr dVr Co
S‘ =7 - . (2.22)
i bY (v 2+ v 2 -v? 2
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Integrating Equation (2.22) and rearranging the terms gives

J 2 2 2 b 1
+ (VO¢ + Vor ) - V. = = (Co - 7 ). (2.23)
The required boundary condition is that

V. (rg, &) = V.. (2.24)

Therefore, by Equations (2.23), {(2.24), and (2.9),

2
Co= § Vopt —2 > (2.25)

where VO may be positive, negative, or zero.

¢
By substituting Equation (2.25) into Equation (2.23) and

rearranging terms, one finds that

1
Vr(r, ¢O)=:L~ (VO¢2+ Vorz)—{kz—)( %—Vo¢+?1-—2-:a—)}22_.
o
(2.26)
The minus (-) sign applies when the particle is traveling toward
the dipole, and the plus (+) sign applies when the particle is

traveling away from it.

By Equation (2.26), V. (r, ¢O) = 0 when r = rp, where

r
o

= — .22
‘/:i: (2r02/b) (v 2+v0r2) + (2r02/b) Vop * 1
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In order to satisfy the requirement that rp < T the plus (+) sign
in Equation (2.27) is used when the charge is negative, and the
minus (-) sign is used when the charge is positive.

Note that for r < rp, Vr (r, ¢>o) becomes imaginary. There-
fore, rp is the closest radial position to the dipole center which
the charged particle may penetrate.

Figure 6 illustrates the behavior of Vr (r, ¢0) for the case
of a charged particle which has a non-zero initial radial com-
ponent of velocity. Initially, V. (r, qbo) = Vor’ a negative quan-
tity; then, as the arrowheads indicate, as r approaches close to
rp, Vr(r, ¢O) increases algebraically. Atr = rp, Vr(r, (bo) = 0;
but the radial component of velocity cannot remain equal to zero
indefinitely because d V. (rp, ¢o)/dt # 0, according to Equation
(2.10). Therefore, Vr (r, ¢O) must become positive and the
particle must move in a positive radial direction. Atr =r_,

V. (r, ¢O) = -V . (a positive quantity), as shown in Figure 6.
Consequently, since the radial velocity of the particle cannot
drop discontinuously to zcro at the boundary of the cquitorial
plane of the terminated dipole, the particle must enter back
into free space.

For the case of a positively charged particle where

A% > 0 and Vor —- 0, rp - by Equation (2.27). Therefore,

o¢

the trajectory of the particle is merely a straight line which is

tangential to the boundary of the terminated dipole.
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And, for the case of a positively charged particle where

V°¢

Figure 6 (a). But, in the limit, as VOr ~ 0, the particle must

< 0 and Vor — 0, points P and Q both approach (ro, 0) in

be reflected back into free space since Vr (r, ¢O) must be con-
tinuous.

A similar analysis holds for the case of a negatively charged
particle. The conclusion, therefore, is that no charged particle,
regardless of sign of charge, energy,or mass, can become
trapped in the equatorial plane of a static terminated dipole.

The actual trajectory may be found by calculating ¢(r). Let
(rD, ¢p) be the coordinates of the point of the trajectory closest

Fy

to the center of the dipcle. By Equaticn (2.20)

6 v_(r) 2

j do = § - dv . (2.28)
¢ V.(r) b *

By substituting the diffe rential, dVr, from Equation (2.21) into

Equation {2.28) and integrating, one finds that

- Sr S, t
Gi{r) -G (ro) + d)o, where r,o2r _rp such tha

r—*>r ,

¢(r>=§

- - < <
\ 2 G (rp) G (ro) G (r) + ¢0, where rp__ r<r_,

such that r — L

(2.29)
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where
1 1 r2 V.oxz‘ 1
Gir) = =l [Tt 2t |\ Tt
2 [4r A% rox rox
ox ox
b2
2
> Vox 1 1

-(1/2) arcsine {- [b/(2] Vo ]1/2 )](1/I'OX2 - l/rz)} s

where r and V are defined as follows:
ox ox

2

2
Vs~ =(2/b) V , + 1/r,

¢

Figure 7 is a sketch of several possible trajectories of a

single charged particle of constant energy.

2.3 Discussion of the Solution

As explained earlier, and demecenstrated by the use of
Figures 6 and 7, if a single charged particle emanates from free
space and travels in the equatorial plane of a static terminated

dipole, such that it is incident to the dipole field anywhere along
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the equatorial boundary, it will be completely reflected back
into free space. For further discussion, it will be helpful to
determine the maximum depth of radial penetration when the
particle is restricted to move in the equatorial plane.
According to Equation (2.27), the furthest radial pene-

tration is given by

r
rp =% (2.30)
Vi + C
where 2
2 r 2 > 1/2
- e — + . B
C . { (VO¢ +V ) F VO¢} (2.31)

As before, the plus {+) sign in Equation ( 2.31) is used when the
charge is negative, and the minus (-) sign is used when the
charge is positive. It may be shown that C << 1 when the par-
ticle is an electron or a proton whose energy is less than 100 kev.
Therefore, by using the binomial expansion of Equation (2.30),

. one finds that

Tr
(0]

e

, C<<1. (2.32)
P 1+ C/2
Let Ap be defined as the maximum radial distance which

the particle may penetrate into the static terminated dipole.

That is,
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A = r -Tr . (2.33)

Therefore, for C << 1, by Equations (2.33), (2.32), and (2.31),
2 2, 1/2

(Vv + Vv ) v
A = o¢ or {;tl + . o¢ 172 }-. (2.34)

P 3
(b/ro ) (Vo¢ * Vor )

By substituting b = -(q/m) K into Equation (2.34), and noting

2 2 1/2

that cos ¢_ =V _ /(Vo + V_,. ) . one obtains

¢ ¢

r

T (1 4+ cos ¢,), for an electron,

T, (1 - cos qbo), for a proton,

where > 1/2

+ v %

r. = o¢ or . (2.35)
| a/m | (K/x,”)

In Equation (2.35), r_ is the Larmor radius of the charged

L

particle in a magnetic field of magnitude K/’ro3, the magnitude
of the field along the equatorial boundary of the static terminated
dipole. By Equation (2.35), the maximum radial distance which

a particle of a given energy may penetrate varies from zero to

2 r depending upon the incident coordinate angle, ¢O. Figure

L,
8 is a polar plot of the behavior of Ap as a function of ¢O, for the

case of an electron. The plot for the case of a proton is similar,
—— e ——

except that the curve R-S-T is rotated 180° about the line con-
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necting (ro, 3 w/2) to the origin, (0, ¢).

For a 100 kev electron, r. = 32 km, and for a 100 kev

L

1= 1375 km; in both cases, rL << T Consequently,

since a charged particle penetrates radially into the terminated

proton, r

dipole for a distance of 2 r_ at most, the particle experiences

L
a very small change in magnetic field during the course of its
trajectory within the dipole field. This fact may be used to
discuss qualitatively the motion of a charged particle which is
incident off the equatorial plane, or at an angle to this plane.

The motion of the particle may be resolved into two components,
one along a field line and one perpendicular tc it. As long as

the velocity along the field line is not too high, the small Larmor
radius means that the particle has little time to spiral along a
field line before again reaching the boundary of the terminated
dipole. The conclusion, therefore, is that reflection occurs
everywhere in the general equatorial region. The motion of a
particle which is incident near the poles is more complicated,
but will not be considered because the magnetosphere is so un-
like the terminated dipole at high latitudes.

It may therefore be concluded that if the interplanetary
field is ignored, the dipolar variation of the magnetosphere near
the equatorial region of the sunside of the magnetopause is in-
sufficient to account for particle trapping alone. Consequently,

if charged particles which are incident near the equatorial zone

are to be trapped by the geomagnetic field, it appears that
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either temporal or non-dipolar spatial variations of the geomag-
netic field, or both, are an important aspect of the trapping
mechanism. In addition, since 23 << ro for electrons and pro-
tons of energy less than 100 kev, the curvature of the magneto-
pause on the sunside of the earth has little effect on the trajec-
tory of such charged particles. So, in order to investigate some
possible mechanisms which may contribute to the trapping of
charged particles, one may simply consider a straight mag-
netospheric boundary when investigating the problem from a

single particle approach.
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CHAPTER 3
A CRITERION FOR THE TRAPPING
OF CHARGED PARTICLES IN AN

ARBITRARY TERMINATED MAGNETIC FIELD

3.1 General Description of the Terminated Fields

to be Discussed

As a consequence of the results of Chapter 2, the possi-
bility of particle trapping in the equatorial region will be inves-
tigated by considering the motion of a charged particle which is
incident at the boundary of a more general magnetic field that
is bordered, at least in part, by free space. The object is to
deduce some general properties required of a static terminated
magnetic field which will allow the particle to penetrate deep
within the field, rather than be reflected back into free space.

Two specific types of terminated magnetic fields will be
considered; namely, (1) a field configuration which has a cir-

cular boundary and is given by (using spherical coordinates)

ol
i
oy}

— < .
T, ¢)ae, r_ro, (3.1)

and (2) a semi-infinite field region which has a straight

boundary and is given by (using Cartesian coordinates)
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ol
"

B, (x, y)3, , y20, (3.2)

=0 , vy <0.

In the first case, indefinite penetration will be said to occur
when a solitary charged particle, emanating from free space,
impinges upon the boundary of the field with a non-zero initial
radial component of velocity-~-and continues to move within the
field with a net motion directed toward the origin of the coordi-
nate system (wherever that may be). This would correspond to
charged particles penetrating through the magnetospheric boun-
dary and moving toward the upper atmosphere of the earth.

In the second case, indefinite penetration will be defined
as occurring when the particle impinges upon the boundary of the
field with a positive component of velocity in the Ey-direction-—
and continues moving within the field with a net motion directed
away from the boundary.

Indefinite penetration may be regarded as being synony-
mous with trapping in the case of a static terminated field; but,
as illustrated in Section 3.3, in the case of a time-varying ter-
minated field, trapping may occur without indefinite penetration.

The case involving the straight boundary is included in
addition to that with the circular boundary, because, as ex-
plained in Chapter 2, if the Larmor radius of the particle is
small compared to the curvature of the boundary of the field,

the boundary appears to be essentially straight. However, the
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criterion for indefinite penetration in both cases turns out to

be similar.

3.2 Development of the Criterion

First consider the terminated magnetic field given by
Equation (3.2). If a particle impinges upon the field with a
component of velocity in the third (i.e., parallel to S,'Z) di-
rection, that component stays constant since it is parallel to
the field. Therefore, that component may be disregarded as
far as trapping is concerned, and the velocity of the particle

will be given by
V=V_a_+ V_a_, for all x, y. (3.3)
X X vy %y

And, at the point of incidence, (xo, 0),

vV = > .
V(xo, yo) Vox a_+ Voy ay, VOY 0, (3.4)
where V__and V___ are constants.
ox oy
By using the Lorentz force equation, F = q(V x B), and
Newton's second law, F = d(mV)/dt, together with Equation (3.3)
and Equation (3.2) for y > 0, one may arrive at the following

two equations by equating vector components:
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-(g/m) B, V_ dVy/dt, (3.5)

(q/m) B, YY dv_/dt, (3.6)

where (gq/m) is the charge-to-mass ratio of the particle.
In a manner similar to the way equation (2.26) was derived
in Chapter 2, one may use (3.3), (3.4), and (3.5) to obtain

2 2 o 2 Ve
Vs [V T v ) -{(q/m)j B, (x, y)dy + vox}
0
(3.7)
The plus +) sign in Equation (3.7) is used when the particle
is traveling in the positive Ey-direction, and the minus (-) sign
is used when the particle travels in the opposite direction--that
is, back toward the boundary. In taking the integral in {(3.7), x
is kept constant since x. y, and VY are treated as independent
variables in the derivation of (3.7).
Initially, the Ey-component of velocity is positive. There-
fore, one obvious sufficient condition for indefinite penetration
of a particle of given charge, mass, and energy is that Bz(x,y) be

such that

Yy 2
(Voyo + Vo, D) > {(q/m>§ B, (x,y) dy + V__ }
0

(3.8)

for all y > 0.

If B, (x, y) is such that for a given charged particle of
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given energy, there exists a y = Yp such that

p

2 2 2
(Vox + Voy ) = {(q/m) S‘ Bz (x,y) dy + Vox } s

0
(3.9)

then Vy(x, yp) = 0, and the particle may or may not reverse its
motion in the Ey—direction, depending upon that particular

BZ (x, v}. Even if the particle does reverse direction at some
such point, that does not mean it will not be able to stay within
the field by again reversing its motion at yet another point. A
familiar example where this may occur is when the gradient of
the field is small over a Larmor radius, sc that the particle
motion may be described by the motion of its guiding center;
since the particle moves about its guiding center with a cyclo-
tron motion, the actual motion of the particle reverses peri-
odically in the Eywdirection, even though the velocity of the
guiding center may always have a ccmponent along the positive
Ey_direction. This particular example will be studied in more
detail, with the aid of an analog computer, in Chapter 4.

While Equaticn (3. 7) cannot be used to describe the
general character of the field required for indefinite penetration,
it can be used to determine if a particular static field will
absolutely not allow indefinite penetration. For instance, one
immediate result of Equation {3.7) is that if Bzvis a function

of y only, and if, in addition, it is a monotonically increasing
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or decreasing function of y, then complete reflection will occur.
This is true because there will exist a point y = Yp where V'y = 0;
and since the integral of BZ (y) appears within a bracket that is
squared, and VY is required to be continuous, the particle will
be reflected back into free space.

However, if Bz (y) undergoes sign reversals with increasing
y, it is apparent that (3.8) may be fulfilled for all y; thus the
particle may penetrate the field indefinitely, or at least until
the amplitude of BZ (y) becomes too large.

If BZ (v) is of the form B0 cos (ky), then for a given Bo’
and a given charged particle of specified energy, (3.8) may be
satisfied by making k large enough. For example, if Vox =0,
and Bz (v) = BO cos {ky}, then in order to {3.8) to be satisfied

it shall be required that k be such that

Voy ~ [ ta/m) (B_/k) | . (3.10)
That is,
k> l/rL ;
where
Voy
Ty o= (3.11)
| ta/m) B I

is the Larmor radius of the charged particle in a constant mag-
netic of magnitude l Bo ] . Near the boundary of the equatorial

zone of the magnetosphere, on the sunside of the earth, the
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magnetic field is of the order of 3 x 10-8 Weber/mz. For the

case of Bo =3 x 10"8 Weber/mz, ry = 32 km for a 100 kev elec-

tron, and r; = 1375 km for a 100 kev proton. Therefore, for

L
V__ =20, it is required that
ox
-5 -1
k>3 x10 m , for a 100 kev electron,
and

k>7.3 % 10-7 m-1 , for a 100 kev proton,

in order for (3.8) to be satisfied in the case where B, (v) =
3 x 10-8 Weber/m2 cos (ky). And for a given type of charged
particle, the required value of k increases as the energy of the
incident particle is reduced.

In light of the preceding discussion, it appears that if BZ
is a function of y only, and if it may be approximated over a
region as a Fourier series, then indefinite (or at least deep)
penetration is more likely to occur if the coefficients of the
dominant harmonic terms, Rk’ are related to the corresponding

harmonics, k, by the expression
k> | (q/m) B | / Yoy (3.12)
More generally, it may be stated that in the case of the

magnetosphere, it appears that if the gradient of the field is

perpendicular to the boundary, and if large non-monotonic vari-
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ations in this field occur over a Larmor radius, then particle
penetration into the magnetosphere may be enhanced. As an
example of the distance over which such a large variation is
required, it should be about 32 km for a 100.kev electron and
about 1375 km for a 100 kev proton; the variation must occur over
shorter distances for lower energy electrons and protons.

For the case of a solitary charged particle impinging
upon the terminated field given by (3.1), one finds that the

radial component of velocity is given by

r 1/2
5 5 ~ 2
Vr::& (V°¢ +V0r)—{(q/m)‘)Be(r,¢)dr+Vo¢} ,
r
o

(3.13)

where r < r0

Equation {3.13) may be found by substituting B _ {r, ¢) for K/r3

O
in Equations (2.8) through (2.21), and solving for Vr' As in
Equation ( 2.26), Voqb and V., are the compoenents of velocity
in the E(P— and Er-directiong respectively, at the pcint of inci-
dence, (ro, ¢o), along the boundary of the field. In evaluating
the integral in (3.13), ¢ is kept constant since r, ¢, and Vr
are treated as independent variables in the development of the
equation.

Since (3.13) is of the same form as (3.7), conclusions
similar to those involving B, (y) may be found for BG (r) by

substituting r for y, and ¢ for x, in the previous discussion

of BZ (y) in (3. 7).
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3.3 Extension of the Criterion to the Case of a Time-Varying

Magnetic Field

The object here is to investigate the trajectory of a single
charged particle which emanates from free space and is incident
at the boundary of the static field given by (3.14) and shown by
the solid line in Figure 9. Then the effect of allowing the field
distribution to vary, as shown by the dashed line in Figure 9,

will be investigated by the use of (3.13). The static field is given

by
- < .
( ZKl(rm r),Oir_rm,
- - < < :
ZKZ(rm r), rm_r__rc,
]3e (r) = (3.14:)
- < .
21{3(ro r}, rcir_ro,
\ 0 , > r ,
o
where Kl’ KZ’ and K3 are all positive constants.
By Equations (3.13) and (3.14) for T <r< T
1/2
» /
V. =+ (v 2+V 2)— -{qg/m) K, (r —r)2+V
r o¢ or a/ml Bl ir, o¢ ?
(3.15)

<r<r . iti , =r , =V _ <0. -
where r,Srsr Initially, at r T Vr Vor 0. There

fore, if

2
(Vo + VoD > {-(q/m> K, (r_ - 1)+ vo¢} (3.16)
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forr <r<r , thenV_<O0forr <r<r , and the charged par-
c— " —"o r c—"—"o
ticle will penetrate the field radially to at least r_. For a 40

6

kev proton, for example, (V 2 + Vorz) equals (2.76 x 10

o¢
m/sec)z; so if Vo¢ =1x 10" m/sec, for instance, then (3.16)
may be fulfilled if K3 (ro - rc) =3 x 10'-8 weber/m2 and
(ro - rc) = 1000 km. (However, if (ro - rc) > 1400 km, then
V. will become equal to zero somewhere along the interval
T, <r< ro and the proton will be reflected back into free space,
as illustrated by Figure 10.)
Suppose the inequality in (3.15) is met. Then, by (3.13) and

{(3.14) forr <r<r,
m-—_ —"o0

V.o=#% (VO¢2 + Vorz) -{ -(q/m) K3 (ro - rC)2
2 2 2 e
+ (q/m) KZ (rC - rm) - (r - rm) + Vo¢} (3.17)
where rmi r irc. Again, if
(Vo¢2 + Vorz) >{-(q/m) K3 (ro - rc)‘2
2
+ (g/m) K2 (rC - rm)z - (r - rrn)2 + Vo¢} (3.18)

for r. <r< T then the particle will continue to penetrate
radially to at least ro- The inequality in (3.18) will be met

for the case of a 40 kev proton, for example, if (rC - rm) =
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500 km, and the rest of the parameters are as were previously
prescribed for (3.16) to hold. (If, on the other hand, (rc - rm)>
1700 km, V. will become equal to zero somewhere along the
interval r . <r< o and the proton will be reflected back into
free space.)

Suppose the inequality in (3.18) holds. Then, by (3.13)
and (3.14) for 0< r < o

2

ot Vor) - { “(a/m) K, (r - T )°

V. o=z| (v
r o
1/2

+ (g/m) K, (r_ - rm)2 - (g/m) Ki(r - r)2 t Vo ,
(3.19)

where 0 < r < T Now suppose that there exists r = rp, where
0< rp < rm, such that Vr = 0. Such would be the case for a
40 kev proton if, for example, r, = 10 T, (earth radii),
Kl >6 x 10-7 weber/m3, and the rest of the parameters are as
were prescribed for (3.16) and (3.18) to hold. Then the par-
ticle will reverse its radial motion at r_ and eventua
flected back into free space, as illustrated by Figure 11. Con-
sequently, no trapping occurs in this particular static field
configuration.

However, suppose that once the particle has passed the
radial coordinate r. with a negative radial velocity, the field
changes as indicated by the dashed line in Figure 9. Then, as

in the static case, if V =0atr=1r , where 0<r < r , the
r P P m
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particle's radial motion will reverse and it will move toward T
where T, < r < T (see Figure 9). As the particle moves from

. . . . < <
rp toward T Equation (3.19) will still apply for rp Srlr .

and (3.17) will apply for T <r< r. (where the positive signs
are used in both cases). However, an expression for the radial

component of velocity must be determined anew for T <r< T,

and for T, <r< rs this may be done as follows.
Equation ( 3.13) applies for any terminated field where

the spherical coordinate system is located within the field, and
2 2
é )

where the field vanishes for r > T, In addition, (VO + Vor
is a constant. Therefore, if a field-free region of infinitesimal

radial thickness is assumed to exist in the neighborhood of r,
where rci r < e (3.13) may be applied by replacing the definite
integral by an indefinite integral plus a constant of integration,

C,, and by replacing VO may be inter-

t by Vo

Here V
o

¢ te’ to

preted as the component of velocity in the a ,-direction which

¢

the particle has when it reaches the infinitesimal field-free

region in the neighborhoced of r. Therefore, one may write

Vr =+ (Vo¢2 + Vorz) -{(q/m)jj(—Z KZ (rm -r))dr

/2
+C, + Vow} ,
(3.20)

wherer <r<r.
c—-— -t
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One may determine the quantity (Ct + Vot¢) by the require-

ment that

Vv (r. ) =V (rc+), (3.21)

r

- , _ . +
where Vr (rC ) is found by setting r = r_in (3.17), and Vr (rC )
is determined by setting r = r. in (3.20). After performing

these substitutions, one finds that

2

— 2 T
C, + Vot¢ = -(q/m) K, (ro -r) - (q/m) K, (rc - Zrmrc) + Vv,

o
(3.22)

Therefore, by Equations {3.20) and (3.22), one finds that

S 2, 2 . 2
Vs | vt v 5 - { “{g/m) K, (r_ - )
1/2
2 2 2
+ la/m) K, P * V0¢ ,
(3.23)

where rC < r< rt.

Now if
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for T, <r< T then the particle will continue moving radially
into the interval T, i r f_ ro. If, however, Vr = 0 at some
r = rtp’ where T, < rtp < T then the particle will become
trapped within the field and will continue to move radially be-
tween rtp and rp as long as field distribution between T, and r
is as shown by the dashed line in Figure 9. Such would be the
case for the previously discussed 40 kev proton if (rt - rm)z
1100 km, and the rest of the parameters are as were prescribed
for (3.16) and (3.18) to hold. The time interval over which the
required variation in field must take place for such trapping,
is of the order of half a Larmor period of the proton, eval-
uated at the average field experienced by the proton. If the
average field is 3 x 10m8 weber/mz, for instance, then the
Larmor period of the proton is about 2.2 seconds. Therefore,
if (rt - rm) = 1100 km, the field maximum on the interval
r. <r< r must approximately double over a period of the
order of one second.

If, on the other hand. {3.24) holds, then one may deter-

mine Vr for T, <r< T in a manner similar to the way (3.23)

was derived. It turns out that

2 2 2

+ Vv y - {—(q/m) K3 (ro - rc)

o¢ or
R N rc>2]
1/2

2 2] 2
tla/m) K f(r -r)” - r, - 1)7 |+ V » (3.25)
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where r, i T f_ ro, and Kt is defined in Figure 9. If Vr = 0 for
some r = rop’ where rt f_ rop i ro, then the particle will become
trapped in the field. Butif V # 0 over the interval r,<r<r_,
then the charged particle will enter back into free space. Again,
in the case of the 40 kev proton, using the same parameters as
were prescribed for (3.16) and {3.18) to hold, if (rt - rm) >

700 km, then trapping will take place. If (rt - rm) = 700 km,

the maximum of the field must therefore increase by 40 per cent,
which is about 60 per cent less than the increase required for
trapping in the interval r. <r< T however, the period over
which the increase must occur is still about the same order of

magnitude.

3.4 Discussion of the Results

According to (3.12), it appears that if the gradient of
the magnetospheric field is perpendicular to the magnetospheric
boundary, then particle penetration into the cavity may be en-
hanced if large, non-monotonic variations occur in the field
over a Larmor radius. In addition, rapid temporal variations
(occuring over a period of the order of a Larmor period) are
seen to be sufficient for the enhancement of particle penetration.
However, such temporal fluctuations appear to be too rapid to
actually occur in the case of the magnetosphere.

The bulk of the material in this chapter was devoted to
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the special case where the gradient of the field is normal to

the boundary of a terminated magnetic field. The case where

the gradient is at an angle to the boundary will be the subject of
Chapter 4, where the analog computer will be used to supplement
the ideas developed in this chapter. While (3.7) and (3.13) offer
some suggestions for the nature of the field required for par-
ticle trapping in the equatorial region of the magnetosphere,

they are limited in that the trajectory must be calculated for

the case when the field varies in two dimensions. This is a
difficult task to perform without the use .of approximations or

a computer.
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CHAPTER 4
PARTICLE PENETRATION INTO A TERMINATED FIELD
WHERE THE FIELD GRADIENT IS NOT

PERPENDICULAR TO THE BOUNDARY

4.1 Description of the Field

Chapters 2 and 3 dealt primarily with particle penetration
into terminated field configurations where the field gradient was
normal to the field boundary. In Chapter 2 it was shown that
a static terminated dipole field caused a single charged particle,
incident near the equatorial zone of the dipole, to be reflected
back into free space; consequently, in Chapter 3, an attempt
was made to deduce some static and time-varying, non-dipolar
field variations required for deep particle penetration and trap-
ping, with emphasis on the case where the field gradient was
perpendicular to the boundary.

In the present chapter the case where the field gradient
is not normal to the boundary will be considered. The object
is to investigate how particle penetration into an arbitrary
static terminated field is affected by (1) the energy of the
particle, (2) the angle of incidence of the particle, (3) the scale
of the field, and (4) by the angle between the field gradient and
the boundary. The static terminated magnetic field to be inves-
tigated is illustrated in Figure 12, and given by (using Car-

tesian coordinates)
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B (X, Y) {B (K.X+1)+ B (K Y+1)}5',Y>0,
z cx X oy y Z

0,Y<O0, (4.1)

where B _, B, K and K are all positive constants.
ox be v

oy
This particular field configuration is not meant to be a
close model of the actual field near the magnetospheric boundary,
Indeed, not much is known about the nature of the magnetic field
in the vicinity of the magnetopause. Rather, it is hoped that by
investigating particle motion in the terminated field shown in
Figure 12, some credulity may be lent to the possibility that
charged particles may enter the magnetosphere by drifting per-
pendicular to a field gradient that is not normal to the magneto-
spheric boundary. Therefore, since the credibility of this pene-
tration mechanism is the object of this investigation, a detailed
guantitative analysis has no significance and will not be carried

out.

4.2 Analog Simulation of the Equations of Motion

By using Equations (3.5) and (3.6), which were derived
from the Lorentz force equaticn and Newton's second law,

together with the following two relationships,

VX=dX/dt, (4.2)

VY: dy/dt, (4.3)
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one finds that

H

-(q/m) (dx/dt) B, = &° Y/at’, (4.4)

n

(q/m) (dY/dt) B, & x/atl. (4.5)

Therefore, substituting Bz from (4.1) into (4.4) and (4.5) gives

-
2 2

-(g/m) [(dX/dt) {Box (K X+ 1)+ BOY (KyY + 1)}_ =d Y/dt6,

(4.6)

A
(CJ/m)[(dY/dt) {BOX (K X+ 1)+ Boy (KY Y + 1) }J = dZX/dtZ,

(4.7)
where Y > 0, and
0 = a®v/at%, (4.8)
0 = a®x/dt?, (4.9)
where Y < 0. The required boundary conditions are
ax(oty/dt = Voo (4.10)
av(oty/dt = oy Voy™0: (4.11)
x(0¥) = X_, (4.12)
y(oT) = Y, Y <o, (4.13)

where V. , V , X , and Y are constants.
ox o o

oy
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The equations of motion (4.6) through (4.9) were simu-
lated on an analog computer (EAI Model TR-48), according
to well-known techniques, at the Pennsylvania State Univer-
sity.

Figures 13 through 19 show the simulated trajectories of
a 40 kev proton for various angles of incidence and magnetic
field gradients. In Figures 13 and 14, B__ =4 x 1078 weber/

mz, K, =1.38x 10'6

-1 —

m =(| e/m| BOX)/I v, andBoyzo.
In Figures 15, 16, and 17, B =B =4 x 10"8 weber/mz, and
ox oy
K =K =1.38x10"°m™). Andin Figure 18, B _ =0, B__ =
x v ox oy
4x108 weber/rnz, and KY -1.38 x107% m"L. Figure 19 simply
shows the trajectory of a 40 kev proton in a terminated constant
magnetic field where | B l =4 x 10_8 Weber/m2 for Y > 0, and

| B| = 0for Y <O.

As illustrated by these figures, the proton motion can
be classified according to four types of behavior: (1) the pro-
ton impinges at the boundary where the flux density is high,
causing it to be reflected back into free space after penetrating
about a Larmor radius; (2) the proton strikes the boundary
where the flux density is not quite so high, causing it to pene-
trate indefinitely into the field region by drifting perpendicular
to the field gradient; (3) it moves unimpeded into the field
region by moving along the neutral line (see Figure 12) of the

field; (4) the proton is incident near the neutral point, Xn,

with an angle of incidence which is oblique to the field gradient,
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causing the proton to '"bounce' back and forth across the neutral
line, with an average velocity parallel to the neutral line.

From the analog simulations, it was found that an inci-
dent proton may penetrate indefinitely into the magnetic field if
it is incident anywhere within a certain vicinity of the neutral
point, Xn. Outside this vicinity, however, reflection always
occurs because the flux density is so high. Let this vicinity
be defined as the region of indefinite penetration. This region
is indicated in Figures 13 through 17.

Since the width of the region of indefinite penetration is a
measure of the number of protons in an incident proton stream
which would enter and stay within the field, it is of interest to
investigate how the width varies with angle of incidence, particle
energy, particle mass, field gradient, and the scale of the field.
Figure 20 shows how the width of the region of indefinite pene-
tration was found to vary with proton energy for the case of
normal incidence, where the magnetic field gradient is parallel
to the boundary (see Figure 13), and all other parameters are
held constant. Figure 21 shows the corresponding variation as
a function of the field gradient,BOx K. for various proton ener-
gies, all other parameters being held constant. Due to machine
and instrumentation errors, the accuracy of the indicated width
of indefinite penetration is about 0.1 x 106 meters in these plots.
Rather than trying to fit curves to Figures 20 and 21 in order to

deduce functional relationships to proton energy and field gra-
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Figure 20. Width of the Region of Indefinite
Penetration Versus Proton Energy,
for the Case of Normal Incidence
and Parallel Gradient.
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K[ 108 m™] & MAGNETIC FIELD GRADIENT

Figure 21. Width of the Region of Indefinite
Penetration Versus Ky, for the
Case of a Normally Incident Pro-
ton and a Parallel Gradient.
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dient, adiabatic theory will be ¢employed in the next section to

arrive at these dependencies.

From Figures 13 through 21, the following observations

may be made.

1.)

2.)

3.)

4.)

By Figure 20, when the magnetic field gradient is
parallel to the boundary, and the proton is normally
incident to the boundary, indefinite penetration may
be enhanced by increasing the proton energy, all
other parameters being held constant.

By Figure 21, when the magnetic field gradient is
parallel to the boundary, and the proton is normally
incident to the boundary, indefinite penetration may
be enhanced by decreasing Kx’ a measure of the
magnitude of the field gradient, Box Kx- However,
according toc Figure 19, when Kx = 0, reflection
occurs all along the boundary, as expected.

In the case where the magnetic field gradient is

rallel to the boundary, comparison of Figures 13

na
ra =i 7 L =

and 14 indicates that indefinite penetration may be
enhanced by oblique incidence of the proton, all
cther parameters being held censtant.

For the case of normal incidence, comparison of
Figures 13 and 15 indicates that indefinite pene-
tration may be enhanced by decreasing the angle

between the magnetic field gradient and the boundary.
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5.) For the case where the gradient is oblique to the
boundary, comparison of Figures 15, 16, and 17
indicates that indefinite penetration may be en-
hanced by oblique incidence of the proton.

6.) In agreement with the discussion of Chapter 3, it
was found that indefinite penetration could not occur
when the magnetic field gradient was normal to the
boundary. Figure 19 is an example.

It was also found that by increasing the scale of the field

(that is, by increasing BOX or Boy’ or both), the width of the
region of indefinite penetration could be decreased.

In order to gain some physical insight into what is re-
quired for indefinite penetration, the width of the region of
indefinite penetration will now be computed by using 'first
order'' thecry for the case of normal incidence, where the

magnetic field gradient is parallel to the boundary.

4.3 Approximation of the Width of the Region of Indefinite

Penetration by First Order Theory

It is well known that the Larmor radius, p, of a particle
of mass m and charge q in 2 constant magnetic field of mag-
nitude l B l is given by

v,

o= * . (4.14)
i a/m | | B]
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where V, is the magnitude of the component of particle velocity
which is perpendicular to B. If a particle moves within a mag-
netic field which is parallel to the z-axis, but whose strength
changes along the x-axis, then as the particle gyrates in the
xy plane, its Larmor radius will, according to {4.14) change
over the orbit. Such is the case of trajectory T1 in Figure 13.
According to the 'first order' theory developed by
Alfven (1950), if the charged particle experiences small
spatial inhomogenieties in B, the motion of the particle may
be described approximately as gyrating around a point which
is moving; this instantaneous center of gyration is called the
''guiding center' of the particle. And the motion of the guiding
center, perpendicular to B, is termed the ''drift'" of the par-
ticle.

More explicitly, according to Alfven , if

v B
L

p << 1, (4.15)
B

where V, B is the gradient of the scalar, B, in the plane per-
pendicular to B, and p is the Larmor radius, then the drift

velocity of the guiding center is given approximately by

Vv, =V —— > . (4.16)
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Figure 22 illustrates indefinite penetration of a proton into
the field of Figure 12, for the case of normal incidence, where
the magnetic field gradient is parallel to the boundary. Here

the magnetic field (scalar) is given by

B=B__ (KXX+ 1). (4.17)
The motion of an incident proton is obviously symmetric

about the neutral line in Figure 22. Therefore, in Figure 22,

v
L

PL 7 TTa/m) B (X))

v (4.18)
J.

(q/m) | B (X} |

It will be assumed that {4.15) holds at the end points of
1
the region of indefinite penetration, i.e. at Xl and X1 ;

!
on, after X1 and X1 have been formally determined by using

first order theory, it will be shown that (4.15) does indeed hold.

later

Inspection of Figure 22 shows that the condition for inde-
finite penetration at the end point of the region of indefinite

penetration, Xl’ is given appreximately by

p = Vp (3/4) 7, (4.19)
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where
2

T = ) (4.20)
(q/m) B(X,)

and Vp is the drift velocity of the guiding center of the proton.
By Equations (4.16), (4.17) and (4.20), the condition for

indefinite penetration at Xl’ given by (4.19), then becomes

3TV, 1

X, =@/2) f———— - —. (4.21)

BOXKX(q/m) K,

In a similar fashion, it is found that the condition for indefinite

penetration at the other end of the region of indefinite pene-

1
tration, Xl is given by

. 3w v, 1
X =- /2y —T— - — (4.22)
BOXKx(q/m) K

The end point, X , was found by using first order theory.

1

Now it must be determined whether or not first order theory
does apply; that is, it must be determined whether or not

{4.15) is met. In {4.15), p will be evaluated at Xl; that is,

V.

= ” . (4.23)
{g/m) B (X,

Therefore, by using (4.17), (4.21) and (4.23), one finds that
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v, B (X)) 4
p (X)) =
B (X)) 3w

< 0.43, (4.24)

for all Kx > 0. Consequently, (4.15) is met to some degree;
therefore, first order theory should give a solution which is
at least somewhat close to being correct.

The width of the region of indefinite penetration, R,

shall be defined by

R = X, -X,. (4.25)

But, by inspection of Figure 22, one finds that

X, =X - p, (4.26)

and

X, =X +py- (4.27)

Therefore, by using (4.21), (4.22), (4.25), (4.26) and (4.27),

one finds that

3w V_L
R = -2 Py (4.28)
BOXKx(q/m)

Here p, may be approximated by (see Figure 22)

v
P, = = , (4.29)
(g/m) B (X3)
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where X3 = X1 - pz/ @, & a positive constant. (4.30)

By using (4.17), (4.29), and {4.30), one arrives at

the following expression:

2
(X, + 1/K) i\/(; + /K )" -4 VL/ {a BOXKx(q/m)}

(2/a)

Py =

(4.31)

Consequently, by combining (4.21) and (4.31), one finds that

Py = (1/4) V_L /{BoxKx(q/m)} v;'n" 012 + Y3 a/2 -16

(4.32)

Therefore, by using Equitions (4.28) and (4.32), cne

finds that
V‘L >
R = {1 -af2YY37 £{1/2)Y3ma -16 a .
BoxKx(q/m)

(4.33)

Since a > 0, and since Py {as well as R) must be real,

then, by (4.32), it is required that
a > 16/(3 w). (4.34)

In addition, it alsc turns out that for 16/(3 m) < a <3 w/(3 w- 4),

a-a/2yV3= > (1/2) '\/Isnaz-léa , (4.35)
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and for @ > 3 w/(3 m - 4), the inequality in (4.35) is reversed.
Therefore, since R is required to be positive, the plus (+)
sign in (4.33) must be used when o > 3 /(3 w- 4); and for
16/(3 7)< a < 3 7/(3 n- 4), either sign may be used in (4.33)
in order to make R positive.

There are no constraints on « other than (4.34); there-
fore, @ cannot be determined without resorting to either
Figure 20 or 21. Comparing the behavior of R predicted by
(4.33) with the computer results shown in Figure 20, it turns
out that in order for (4.33) to agree with Figure 20 for at least
the single case where KX =0.2 x 10_6 m-l and the energy of the

proton is 25 kev, it is required that

l-a/2)V3n 2(/2) V3nma®-16a = 1.8;
that is,

BGra-16a)/a=0.8-(1-a/2)V3m)° . (4.36)

Solving (4.36) for a gives a = 2.75, which is an allowable
value since it is in accordance with (4.34). Consequently, it
appears that the width of the region of indefinite penetration in

Figure 22, is given approximately by

V.l.

R = 1.8 . (4.37)
BOXKXN/HH
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Plots of (4.37) corresponding to the cases investigated
by the computer are shown in Figure 20. The close agree-
ment between the simulated and calculated curves of Figure 20
at least lends support to the behavior of R as predicted by (4.37).
According to Equation (4.17), the width of the region of inde-
finite penetration for the case of a normally incident proton,
when the field gradient is parallel to the boundary, is (1) pro-
portional to the fourth réot of energy, (2) inversely propor-
tional to the field gradient (BOX Kx), and (3) inversely pro-
portional to the scale of the field (BOX). (It is interesting to
note that, unlike the general case where the field gradient was
normal to the boundary, which was considered in Chapter 3,
indefinite penetration is enhanced by small spatial variations
of the field.)

By inspection of Figures 14 through 19, cases involving
oblique incidence or gradients which are not parallel to the
boundary (or both) cannot always be solved by first order
theory. Nor is it believed by the author that an analytic solu-
tion for the widths of the regions of indefinite penetration for
these cases would be of much value. As was mentioned pre-
viously, the magnetic field configuration of Figure 12 was not
meant to represent the magnetic field near the magnetospheric
boundary. Rather, it is the author's hope that by investigating
some trajectories of a proton into the field of Figure 12, some

credibility could be lent to the possibility that charged par-
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ticles may enter the magnetosphere by drifting perpendicular
to a field gradient that is not normal to the magnetospheric
boundary.

The possibility of energy differentiation by a magnetic
field was demonstrated by Figure 20 and Equation (4.37). In
addition, since the direction of the cyclotron motion of a
charged particle depends upon the sign of its charge, it is
apparent that there may also be a differentiation with respect
to the sign of the charges of incident particles. Consequently,
in the case of the magnetosphere, the field near the boundary
could act like a filter--that is, it may allow some charged par-
ticles to penetrate deep within it, while rejecting others,
simply on the basis of drift motion of the particles. At the
present, however, the lack of knowledge of the magnetospheric
field on a sufficiently small spatial scale makes it impossible

to conclude any such d
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CHAPTER 5

SUMMARY AND CONCLUSIONS

This work is a theoretical investigation of the trajectory
of a solitary charged particle which emanates from free space
and is incident at the boundary of an idealized magnetic field.
The object is to arrive at some understanding of what is re-
quired of the magnetospheric field if charged particles, incident
at the magnetospheric boundary, are tc be prevented from being
reflected back out of the magnetospheric boundary.

In Chapter 2, the Lorentz force equation and Newton's
seccend law are used to arrive at the eguations of motion of a
solitary charged particle which is incident along the equatcrial
plane of a terminated dipole magnetic field. The equations of
motion are solved analytically, and it is shown that the incident
particle is always reflected back intc free space.

Consequently, in Chapter 3, an attempt is made to deduce
some static and time-varying, non-dipelar magnetic field
variations required fcr deep penetration and trapping: em-
phasis is put on the case where the field gradient is normal to
the boundary of the terminated fieid. For the case of the static
field, when the field gradient is normal to the boundary, it is
shown that the incident charged particle will always be reflected
back into free space if the field is monotonically increasing or

decreasing; but the particle may penetrate deep within the field
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if large non-montonic variations in flux density occur over a
Larmor radius--localized field reversals being an obvious
example.

Also, for the case when the field gradient is normal to
the boundary, an example of particle trapping due to time
variations of the flux density is given in Section 3.2. As
pointed out in this example, however, the time scale involved
is of the order of a Larmor period (e.g., about 2 seconds
for a proton in a field of 3 x 10 ~8weber/mz) --a period much
smaller than the presently known temporal variations of the
magnetospheric field (see Cahill and Amazeen, 1963).

Then, in Chapter 4, analog simulation is employed to
show ‘that a charged particle may penetrate indefinitely into
a terminated field by drifting perpendicular to a magnetic field
gradient, provided the gradient is not perpendicular to the
boundary of the field. In particular, using the terminated field
of Figure 12 (together with reasonable parameters), it is shown
that the transmissibility of the particle at the boundary is deter-
mined by (1) the energy of the particle, (2) the angle of inci-
dence of the particle, (3) the scale of the field, and (4) by the
angle between the field gradient and the boundary (see Figures
13 through 21). In addition, first order theory is used to
arrive at an analytic expression for the width of the region of
indefinite penetration {defined on pp. ’66 ), for the case where

the field gradient is parallel to the boundary and the particle is
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a normally incident proton; this expression, Equation (4.37), is
found to be in good agreement with the results of the analog
simulations (see Figure 20).

This investigation of the trajectories of a proton into
the terminated field of Figure 12 is intended to lend some
credibility to the possibility that charged particles may enter
the magrnetosphere by drifting perpendicular to a magnetic
field gradient which is not normal to the magnetospheric
boundary. In the case of the magnetosphere, this probably
could be a local type of phenomenon, at best, in the low lati-
tude regions of the sunside of the magnetosphere, since the
macroscopic behavior of the magnetospheric field is known to
have a strong radial dependence in this region (see Cahill and
Amazeen, 1963).

Matuura and Nagata (1960) also considered a terminated
magnetic field, making mention of the importance of the di-
rection of the magnetic field gradient in affecting the trans-
missibility of the particle at the boundary. In addition, they
argued that once passed the boundary, charged particles may
possibly take a '"randon walk' into the magnetosphere due to
irregularities in the magnetic field (the mean life of an indi-
vidual irregular structure being assumed to be of the order of
10 seconds--a period considerably longer than the Larmor
period of the particles considered).

At the present, however, the lack of knowledge of the
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magnetospheric field on a sufficiently small spatial and time
scale (see Fairfield and Ness, 1966), makes it impossible to
conclude that localized behavior of the magnetic field along
the magnetospheric boundary may actually be a key factor in
contributing to deep particle penetration of the magnetosphere.
In the event that more is learned about the field near the
magnetospheric boundary, a suggestion for further study would
be to simulate a more realistic model in an attempt to confirm
whether direct penetration of charged particles across the

magnetospheric boundary is possible.
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APPENDIX A

Given: A single particle of charge q, mass m, and velocity

V, moves within an arbitrary pure magnetic field, B.

To Prove: i) | v | 2 . Kog a constant, and
ii) dm/dt = 0.

Proof:

i) By using the Lorentz force equation, F = q(V x B),

and Newton's second law, F = d{(mV)/dt, one finds

that
q{V xB) = V {dm/dt) + m {dV/dt).
But since V and {V x B) are orthogonal,

qV-(VxB}=0.

Therefore, by {A.l) and (A.2),

o
H

v {V(dm/dt) +m (dV/dt)}

= | 7| %{dm/dt) + m V - (aV/dt)

= | V1% (@m/ar) + (m/2) (d | T | 2/an).

Therefore, by (A.3).

2(dm/m)=-(diVi2/|Viz).

Integrating (A.4) gives

(A.1)

(A.2)

(A 3)

(A.4)




-85-
loge (m| ¥ ] 2) = Co’ a constant. (A.5)

But the mass, m, is a function of the velocity of the particle,

increasing with increasing speed according to the relation

m:mo/‘\/l-(lwz/czn (A.6)

where c is the speed of light, and mo is the '""rest mass'' of

the particle.

Therefore, by using (A.5) and (A.6), one finds that

1oge{mo|V|2/‘\/1-(]V|‘2/c2)} =c,, (A.7)

which implies

] v | 2 = KO, a constant. (A.8)
Q. E.D
.. . = 2.
ii) Since | v | is a constant,
-1 2

a|v|~ = o. (A.9)
Therefore, by (A.4) and (A.9),

dm = 0, (A.10)

which implies
dm/dt = 0. ‘ (A.11)
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